อุณหพลศาสตร์( Thermodynamics)คือการศึกษาความสัมพันธ์เกี่ยวกับ ความร้อน อุณหภูมิ งาน และพลังงาน ในช่วงแรกการศึกษาอุณหพลศาสตร์เกิดจากการศึกษาเรื่องเครื่องจักรความร้อน ต่อมาในภายหลัง นักวิทยาศาสตร์ได้ตระหนักว่า อุณหพลศาสตร์ครอบคลุมถึงกระบวนการการเปลี่ยนแปลงมหาศาล ทั้งสิ่งมีชีวิตและสิ่งไม่มีชีวิต ทั้งในโลกตลอดจนทั้งจักรวาล
ระบบอุณหพลศาสตร์ที่สำคัญมี 3 ประเภท คือ
- ระบบอิสระหรือโดดเดี่ยว (isolated systems) คือ ระบบที่ปิดกั้นตัวเองจากสิ่งแวดล้อมโดยสมบูรณ์ มวลหรือพลังงานภายนอกไม่สามารถเข้ามาในระบบได้
- ระบบปิด (closed systems) คือ ระบบที่อนุญาตให้พลังงานถ่ายเทผ่านเข้าหรือออกระบบได้ แต่ไม่อนุญาตให้มวลเข้ามาในระบบ (มวลโดยรวมของระบบคงที่ตลอดเวลา) ในการวิเคราะห์กระบวนการทางอุณหพลศาสตร์ เรานิยามพลังงานที่เข้าออกจากระบบให้มีสองประเภทคือ พลังงานความร้อน (พลังงานที่เกิดจากความแตกต่างระหว่างอุณหภูมิของระบบกับอุณหภูมิของสิ่งแวดล้อม) และ พลังงานอื่น (เช่น พลังงานที่เกิดจากงานทางกลศาสตร์)
- ระบบเปิด (open systems) คือ ระบบที่อนุญาตให้ทั้งมวลและพลังงานเข้าออกจากระบบได้ หนังสือบางเล่มกำหนดว่าระบบเปิดจะต้องนิยามให้ปริมาตรคงที่ (fixed volume)
กฎต่าง ๆ ในอุณหพลศาสตร์จะมีความหมายก็ต่อเมื่อผู้ใช้นิยามระบบอุณหพลศาสตร์อย่างชัดเจนแล้วเท่านั้น เมื่อระบบอยู่ในสภาวะสมดุลในทุก ๆ ด้าน เราจะกล่าวว่า ระบบอยู่ในสถานะที่แน่นอน การวิเคราะห์กระบวนการทางอุณหพลศาสตร์จะวิเคราะห์ได้ก็ต่อเมื่อทุก ๆ ขั้นตอนในกระบวนการสามารถประมาณได้ว่าอยู่ในสภาวะสมดุลเท่านั้น ตัวแปรในระบบอุณหพลศาสตร์ที่สำคัญ คือ ความดัน ปริมาตร อุณหภูมิ พลังงานภายใน เอนโทรปี เอนธาลปี พลังงานเสรีของกิ๊บส์ และพลังงานเสรีของเฮมโฮลทซ์ เป็นต้น
กฎของอุณหพลศาสตร์
- ข้อที่ศูนย์:ถ้าระบบ A และ B อยู่ในภาวะสมดุลทางอุณหพลศาสตร์ และระบบ B และ C อยู่ในสภาวะสมดุลทางอุณหพลศาสตร์แล้ว ระบบ A และ C จะอยู่ในภาวะสมดุลทางอุณหพลศาสตร์ด้วยเช่นกัน นั่นคือภาวะสมดุลทางอุณหพลศาสตร์มีคุณสมบัติถ่ายทอด (transitive) ได้นั่นเอง
- ข้อที่หนึ่ง:พลังงานของระบบที่เปลี่ยนแปลงในกระบวนการอะเดียแบติก (กระบวนการที่ไม่มีการถ่ายเทความร้อน) จะไม่ขึ้นกับวิถีทางหรือทิศทางของงานที่กระทำต่อระบบในกระบวนการนั้น ๆ การเปลี่ยนแปลงจะขึ้นอยู่กับสถานะเริ่มต้นและสถานะสุดท้ายเท่านั้น นั่นคือการเปลี่ยนแปลงพลังงานของระบบมีคุณสมบัติความไม่แปรผัน (invariance) ต่อทิศทางของกระบวนการในกระบวนการอะเดียแบติก. เราสามารถแสดงได้ว่ากฎข้อนี้เขียนแทนได้ด้วยสัญลักษณ์ทางคณิตศาสตร์ dE=dQ-dW \, โดย E หมายถึงพลังงานของระบบ, Q หมายถึงพลังงานความร้อนที่เข้าสู่ระบบ, และ W หมายถึงงานที่กระทำต่อระบบ.
- ข้อที่สอง:ไม่มีเครื่องจักรความร้อนใด ๆ ที่จะให้ประสิทธิภาพ 100 % (เคลวิน-พลังค์)ความร้อนจากแหล่งที่มีอุณหภูมิต่ำ ไม่สามารถถ่ายเทไปยังแหล่งที่มีอุณหภูมิสูงกว่าได้ โดยธรรมชาติ (เคลาซิอุส) เอนโทรปีของระบบอิสระไม่มีทางที่จะลดลงในกระบวนการใดๆ (ทั่วไป) นั่นคือการเปลี่ยนแปลงเอนโทรปีของระบบมีคุณสมบัติเป็นฟังก์ชันเพิ่มทางเดียว (monotonically increasing) โดยเราพิจารณาเอนโทรปีเป็นฟังก์ชันของเวลา. จากคุณสมบัตินี้ทำให้นักวิทยาศาสตร์เชื่อว่าเราสามารถพิจารณาเอนโทรปีในการระบุทิศทางของเวลาได้
- ข้อที่สาม:เมื่ออุณหภูมิสัมบูรณ์ลู่เข้าศูนย์ เอนโทรปีของระบบจะลู่เข้าค่าคงที่
สรุปพลังงานในอุณหพลศาสตร์
เมื่อพิจารณาจากสมการสมดุลพลังงานในระบบอุณหพลศาสตร์ จะได้ระดับของพลังงานจำนวนหนึ่งที่เรียกชื่อว่า Thermodynamic potential ซึ่งสามารถวัดได้จากระบบ พลังงานที่สำคัญ 5 ตัวได้แก่
1. พลังงานภายใน U
2. พลังงานเสรีของเฮล์มโฮลทซ์ A = U-TS
3. เอนทาลปี H = U+PV
4. พลังงานเสรีของกิ๊บส์ G = U+PV-TS
5. Grand potential Phi_{G}=U-TS-mu N
สำหรับพลังงานอื่นๆ ในระบบอุณหพลศาสตร์สามารถหาได้จากการคำนวณโดยใช้สมการของเลอช็องดร์ เพื่อใช้ตรวจสอบการเปลี่ยนแปลงพลังงานภายในระบบนับจากสภาวะเริ่มต้นถึงสภาวะสิ้นสุด พลังงานที่ใช้ไปขึ้นอยู่กับค่าคงที่ของระบบ เช่นค่าของอุณหภูมิหรือความดัน พลังงานภายในหมายถึงพลังงานภายในระบบ เอนทาลปีคือพลังงานภายในระบบบวกกับพลังงานจากงานของแรงดัน-ปริมาตร ส่วนพลังงานของเฮล์มโอลทซ์และพลังงานของกิ๊บส์คือพลังงานที่มีเพียงพอในระบบสำหรับสร้างงาน เมื่ออุณหภูมิกับปริมาตร หรือความดันกับอุณหภูมิมีค่าเท่าเดิมตามลำดับ
ไม่มีความคิดเห็น:
แสดงความคิดเห็น